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Abstract

Dynamic buckling for autonomous nondissipative lumped-mass systems under impact loading is thoroughly in-
vestigated. It is assumed that a fully plastic impact due to a striking body falling freely from a given height takes place,
and that the effect of wave propagation can be neglected. Attention is focused on the post-impact dynamic buckling
after establishing the initial velocities and the associated initial kinetic energy. Via a thorough discussion of the dynamic
buckling mechanism based on certain salient geometric features of the total potential energy surface, one can obtain
practically “exact’ dynamic buckling loads, by extending previous findings valid for step load of infinite duration to the
case of impact load. The proposed geometric approach, which is described for n-DOF systems and then presented in
detail for 2-DOF systems, gives comprehensive, direct, readily obtained and reliable solutions compared to numerical
integration schemes. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The field of nonlinear stability of structures which has gained particular importance long time ago
(Bolotin, 1964) continues in our days to attract the interest of researchers (Simitses, 1989), in view also of
the recent progress in nonlinear dynamics and chaos (Thompson and Stewart, 1986). Nonlinear dynamic
buckling of dissipative/nondissipative discrete systems under step constant directional (conservative)
loading of infinite, finite or very short duration as well as pertinent criteria for establishing approximate and
lower/upper bound dynamic buckling estimates have been critically presented in various studies (Kounadis,
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1991a, 1993, 1994; Kalathas and Kounadis, 1991, Gantes and Kounadis, 1995). An a priori prediction of
the degree of accuracy of the dynamic buckling load (DBL) associated with zero total potential energy for
autonomous nondissipative 2 or 3-DOF systems with simple (Kounadis, 1996a,b; Kounadis et al., 1999) or
multiple (Kounadis and Raftoyiannis, 1997) critical points was recently presented. This is based on the
geometry of the motion channel and the position of the starting point of motion relatively to the location of
the stable and corresponding unstable (saddle) equilibrium point, via the neighbourhood of which the
escaped motion (dynamic buckling) takes place. Thus, a geometric approach based on certain salient
features of the zero level total potential energy “surface” or “hypersurface” (for n-DOF systems with n > 3)
in conjunction with the total energy-balance equation allow establishment of new stability criteria (Ko-
unadis, 1999a) leading to readily obtained, practically “exact”, DBLs for autonomous nondissipative
systems.

A major difficulty for establishing the response of such autonomous potential systems is that quite often
one has to overcome numerical difficulties associated with the long term response (Kounadis, 1991b)
(related to dynamic buckling), behaviours very sensitive to initial conditions (Kalathas and Kounadis,
1991), or to damping (Kounadis, 1991b), as well as cases with alternative narrow regions of stability/in-
stability as the loading increases slowly from zero (Kalathas and Kounadis, 1991). Additional difficulties
arise when numerical schemes are applied to the case of dynamic buckling impact analysis since the initial
conditions are unknown. These drawbacks become more acute when a multi-parameter discussion is re-
quired.

In view of the above, modern computational techniques slide gradually away from the classical inte-
gration schemes, perturbation and averaging techniques, being steadily oriented to more sophisticated
methods based on energy, topological and geometrical concepts together with a profound knowledge of the
physical phenomena related to the pertinent problem. The powerful techniques of the center manifold
theorem (Carr, 1981) and of Lyapunov—-Schmidt (Chow and Hale, 1982) for reducing the system dimension
are local in character and need the transformation of the field equations into a standard form, difficult, in
general, to be established. Hence, exact DBLs of general discrete systems can be determined only through a
global (nonlinear) dynamic analysis associated with several drawbacks mentioned above. Nevertheless, one
can obtain practically “exact” DBLs by the aforementioned geometric approach, employed for n-DOF
systems which under statically applied load experience either a limit point instability (Fig. 1a) or an un-
stable branching point instability bifurcating from a nonlinear prebuckling path (Fig. 1b). The main ob-
jective of this analysis is to extend the above powerful geometric approach (Kounadis, 1999a), valid for
dynamic buckling under step loading, to the case of dynamic buckling under impact loading.

A simple dynamic buckling problem of a 2-DOF lumped-mass cantilever model under impact loading
based on lower bound dynamic buckling estimates was presented by Kounadis (1993). Fully plastic impact
(Goldsmith, 1960) via a heavy body falling freely from a given height (Kounadis, 1982), which strikes
centrally the tip-mass, was postulated. It was also assumed that the height was sufficiently small (compared
with the height of the cantilever) and that the ratio of masses is such that the effect of wave propagation can
be neglected. A major step for the subsequent analysis was the determination of the initial velocities (im-
mediately after impact) and the associated initial kinetic energy. This was accomplished by applying the law
of impulse momentum together with vectorial kinematic relations among the velocities of the concentrated
masses. The 2-DOF cantilever model under static loading exhibits the nonlinear equilibrium path of Fig.
la, while the model of a simply supported column (Kounadis, 1991a) the nonlinear equilibrium path of Fig.
1b. Recently the impact analysis of the 2-DOF model was extended to an n-DOF lumped-mass cantilever
model (Kounadis et al., 1997). In the present work, the degree of accuracy of the results of the above
approximate impact analyses will be checked via the aforementioned geometric approach (Kounadis,
1996a,b, 1999) as extended and refined in a recent work (Gantes et al., 1998), and subsequently via the
numerical scheme of Runge—Kutta. The theoretical treatment of the problem will be presented for multi-
DOF systems, even though numerical results will be restricted to 2-DOF systems.
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Fig. 1. Nonlinear equilibrium paths (4 versus ¢; and g;): (a) of a typical limit point system and (b) of an unstable bifurcational system.

2. Statement of the problem

Consider the n-DOF cantilever model with concentrated masses shown in Fig. 2 which is assumed to
simulate the continuous system of a weightless cantilever beam. It consists of n weightless rigid links of
equal length ¢, interconnected to each other as well as to the ground by frictionless hinges and corre-
sponding nonlinear torsional springs with equal linear stiffness constants k& and different nonlinear (qua-
dratic) stiffness constants 6; (i =1,...,n). The springs may be related to corresponding linear viscous
dampers with coefficients ¢;, thus simulating not only the stiffness properties but also the damping of the
continuous beam. Weightless concentrated masses m; (i = 1,...,n) simulate as lumped the distributed mass
of the links attached at the hinges.

It should be mentioned that the process of discretization of the continuous beam into a discrete model is
beyond the scope of our paper. Our objective is to treat a discrete model, which has already been discretized
by some other procedure. Thus issues such as the accuracy of the discretization and the influence of the
number of links are not dealt with here.

The unstressed configuration of the imperfect model before impact is specified by the initial angles
& (i=1,...,n) between each link A; |A, and the vertical direction as shown in Fig. 2. The horizontal and
vertical components of initial displacements ¢9%; and ¢% are readily determined (Kounadis et al., 1997) as
functions of ¢;, while the corresponding displacements of the deformed configuration ¢;5 and ¢,v in terms of

the angles 0; (i = 1,...,n) measured from the vertical direction (Fig. 3). Thus, the bending moment de-
veloped at joint i is given by (Kounadis et al., 1997, Kounadis, 1998)
M/kzei_8[+5[(0[—8i)2, i=1,...,n (1)

The above n-DOF imperfect cantilever model is subjected to the following impact loading: a heavy body
mog falling from a height H strikes centrally the tip mass m, (see Fig. 2) with initial velocity

vo = \/2gH (2)
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Fig. 2. Initially unstressed Ziegler’s n-DOF imperfect model, before impact (1 = 0).

where g is the gravity acceleration. The height is assumed sufficiently small (compared with the cantilever
height nf) and the ratio of falling mass to system masses is such that the effect of wave propagation can be
neglected. A fully plastic impact (Goldsmith, 1960) is postulated and thus, the two masses m, and m, attain
immediately after impact the same velocity v, (=q") and do not separate thereafter (Goldsmith, 1960;
Kounadis, 1982). This is illustrated in Fig. 3 showing that the tip mass (immediately after impact, i.e. at
time t=0) is M = my + m,.

The magnitudes of initial (# = 0) displacements q°, a priori known, can be computed in terms of 6;(0) as
follows

0;(0)=¢ (i=1,...,n) (3)
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Fig. 3. Deformed configuration of n-DOF imperfect model, after impact (at # > 0).

Thus, one has to determine the initial velocities ¢° = q,(¢;) (and thereafter the initial angular velocities 0:(0))

of each mass m; (i =1,...,n) in terms of the impact loading myg and ¢;. To this end we observe the fol-
lowing:

At the time /=0 the mass m; acquires a velocity v;(=¢’) of unknown magnitude v;(=¢?) that is
perpendicular to the link AgA;. Masses ma,...,m, | assume velocities v»(=¢q)),...,v,_1(= ¢’ ,) with

unknown magnitudes and directions that can be determined using the law of impulse momentum com-
bined with vectorial kinematic relations (Kounadis et al., 1997) among the velocities of the masses.
Since the procedure for determining the initial velocities ¢° (and 0;(0)) is described in detail by Kounadis
(1993) and Kounadis et al. (1997), the present analysis will be basically confined to the post-impact re-
sponse. .

The initial velocities 0;(0) (determined analytically by Kounadis et al. (1997)) together with the initial
displacements 6;(0) = ¢; (a priori known) constitute the initial conditions of the problem. Note that the
initial conditions are linear functions of two external control parameters: the striking mass m, (or the
loading P = myg) and the falling height H (or the initial velocity vy = /2gH ). Hence, keeping the one
control parameter constant one can find the value of the other smoothly varying parameter that will cause
dynamic buckling. If my # 0 (i.e. P = mog # 0) and H = 0 the initial angular velocities vanish (i.e. 0;,(0) =0
for all 7). These angular velocities become also zero, if H # 0 but my = 0 (i.e. P = 0).

It should be mentioned that the height of impact is not sufficient to determine an initial velocity and then
a buckling load, unless an additional criterion is imposed. This criterion will be to seek the minimum falling
mass that causes buckling for given height or the minimum height for given mass.
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3. Post-impact response

The response of the system after impact subject to the previous initial conditions, can be described by the
following set of Lagrange equations of motion (Kounadis, 1996a,b).

d /oK 0K oV OF
a(a_(),.>_6_0,-+6_0i+a_0i_0’ i=1,...,n (4)
where K is the positive definite function of the total kinetic energy; V = V(6;; 4;¢;) is the total potential
energy, being a nonlinear function of 0; = 0;(¢) and linear function of the dimensionless loading /1 =
Pl/k = mogl/k resulting after impact; F is a nonnegative definite dissipation function.

As stated above, dynamic buckling is governed by two external control parameters: the loading 4 and the
falling height # = H /nf (from which the initial conditions are dependent). If # = 0 we have the case of a
suddenly applied (step) load of infinite duration which can be treated very efficiently using the afore-
mentioned geometric approach (Kounadis, 1999). A description of this approach will allow a compre-
hensive transition to the case of dynamic buckling due to impact.

3.1. Step load of infinite duration

For such a type of loading all initial angular velocities 0;(0) are zero; hence, the response of the system is
governed by Eq. (4) subject to the initial conditions (3) which define the location of the starting position of
motion (see point A in Fig. 1a,b) in the V-displacement space for fixed 1. The total energy E of the above
autonomous system (including the loss of energy) at any time ¢ > 0 for a system initially (¢ = 0) unstressed
is given by

t
E:K+V+2/th’=0 (5)
0

From Eq. (5) — being the first integral of Eq. (4) — follows that throughout the motion (including dynamic
buckling, being an escaped motion)

V(0 4e) <0 (i=1,....n) (6)

while if ¥ > 0 there is no motion, and thus dynamic buckling.

According to the stability criterion adopted herein (Kounadis, 1996a,b, 1999; Kounadis et al., 1999;
Kounadis and Raftoyiannis, 1997) (boundedness of solution) dynamic buckling (in the large) is defined as
that state for which an escaped motion becomes unbounded (overflow) or of very large amplitude or is
captured (if damping is included) by a remote equilibrium state (acting as point attractor). The minimum
load corresponding to this state is defined as the DBL. Dynamic buckling for an n-DOF cantilever model
associated with the equilibrium path of Fig. 1a occurs sometimes via a saddle point D (with ¥ =0) or
usually via the neighbourhood of D (with very small negative V). For systems associated with an unstable
symmetric branching point (Fig. 1b) there are two saddles D and D' (with ' = 0) as discussed by Kounadis
et al. (1999) and Kounadis (1999). The DBL corresponding to V' = 0 is denoted by /p. In nondissipative
systems Ap coincides with the exact DBL Ap, of 1-DOF systems and under certain conditions with the exact
DBL /p of n-DOF systems, being in general for the latter systems a lower bound dynamic buckling estimate
(Kounadis, 1996a,b), i.e. ip < /p.

The load Ap and the corresponding saddles 9? (on the unstable path) of the cantilever model under
discussion are obtained for given initial conditions (3) by solving the systems of (n + 1) equations (Ko-
unadis, 1996a,b),
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Vi(0:, 2;6) = 0 _
V(O,z,i;s,z):O}’ i=1,...,n (7)

The error (difference) E = Ap — Ap is more conveniently determined by considering 2-DOF systems
for which one has a geometric picture of the total potential energy ““surface” V(0;,4;¢;) in the three-
dimensional V-displacement space. For such a model at a fixed load A < ip the “‘surface” V(0;,1;¢)
passing through the point A (defined by the initial displacements ¢, &), the stable equilibrium B (defined
‘E)y 0]13, 05) and the saddle F (defined by 01F, 95) is shown in Fig. 4a. Points B and F correspond both to

A. At point B the total potential V" is minimum, at point A we have ¥V = 0, while V" at the saddle F is
positive.

The intersection of V with the horizontal plane 00,0, is a plane closed curve V =0 passing always
through the starting point of motion A. Fig. 4b shows the projection of motion in the horizontal plane. If
A < Ap any motion starting from A cannot escape via the saddle F(Bf7 05) since above the horizontal plane
V' > 0, which implies no motion (and hence no dynamic buckling). However, as 4 increases, the saddle F is
coming down approaching the horizontal plane 00,60,. At A = ip (for which V' = 0) the “surface” V touches
this plane at the saddle D (Fig. 5a). The new closed curve V' = 0 (intersection of the V-surface with the
00,0,-plane) passes through the points A and D. The projection E’ of the stable equilibrium (corresponding
to Ap) is surrounded by the plane (closed) curve V' = 0. Since motion occurs only if ¥ <0, considering the
variation of (V' < 0) within the vertical plane passing through the equilibria E and D, we observe that } has
minimum at E and maximum at D. A motion that starts from A (taking place in the interior of the surface
V' <0) can escape through the saddle D only when the points A, E and D are located in the same vertical
plane. Then, the starting point of motion A coincides with G (Fig. 5b), a fact which implies, ip = Ap. If this
is not so (i.e. A # G), the motion starting from point A cannot reach point D but will stop at a point of the
line E'D where the “width” of the curve V' = 0 (defined by distance between the two points of intersection
of V' = 0 with the normal on E’D is smaller than the “width” of this curve at point A. Then, the motion

(911T 67 ): saddle point

=
(6%,6®): stable equilibrium point

Fig. 4. (a) Energy surface V(at A" < Jp) for a 2-DOF system, and (b) projection of motion on 00,0,-plane.
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Fig. 5. (a) Total potential surface V' <0 at A = Jp, and (b) its intersection with the 06, 6,-plane for a 2-DOF system.

consists of back and forth oscillations between these two points around the stable equilibrium E which is a
center. As point A is going away from the vertical plane (passing through the points E and D) the difference
E = lp — Jp increases (Kounadis 1996a,b, 1999). However, by slightly increasing 4 (above Ap ) the closed
curve ¥ = 0 becomes an open curve exhibiting an “opening” with “width> 4,4, at the corresponding new
saddle D’ (Fig. 6a). If such an “opening” 4,4, is smaller than the width (of the new curve V = 0) AA’ at
point A (defining the initial amplitude of the motion), an escaped motion through the neighbourhood of D’
(where V(D') < 0) is impossible. Then, we further increase A in such a way so that the “width” of the curve
V =0 at A becomes equal to the “width” of this curve at the corresponding new saddle D” (Fig. 6b). Then,
an escaped motion (and hence dynamic buckling) will occur, and the corresponding to this situation load
Jp is the DBL.

3.1.1. Degree of accuracy of Jp and Jp ~

The degree of accuracy of both DBLs Ap and /p depends basically on the shape of the closed curve
V' =0, and more specifically on the ratio of the maximum ““width” versus the length of the longitudinal axis
DG (Fig. 5b). As this ratio decreases the degree of accuracy of Ap and Ap increases appreciably. Moreover,
for a given value of this ratio (i.e. for a given shape of the closed curve ¥ = 0) the error in Ap depends on the
location of the starting point of motion A relatively to the two points E’ (projection of the stable equi-
librium point) and the saddle D (Kounadis, 1996a,b). This is quantitatively measured with the aid of the
ratio (Gantes et al., 1998) r = (AH)/(DG). The decrease of r implies a much smaller error in Jp. A better
estimate of Ap leads to a much more accurate Ap.

It is worth noticing that for flexurally vibrating systems in their own plane (planar systems) the afore-
mentioned ratio of the maximum “width” versus the length (GD) is usually very small (e.g. less than 0.20),
a fact that implies a good approximate DBL Jp which subsequently leads to a DBL Ap approaching (i.e.
Jo — Jp). This allows us to consider Ap practically as the “exact” DBL.

The analysis that follows is based on the last assumption regarding the shape of the closed curve V' =0
(associated with values of the last ratio smaller than 0.20).
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Fig. 6. Curves ¥ = 0 for 2 > /p.

3.2. Impact load

As stated above, if H=0 (ie. vp=0) and my#0 (i.e. P or A is different from zero), then
0:(0) =0 (i =1,...,n). This corresponds to the previous case of a step loading of infinite duration. Now
we consider the case / # 0 with my # 0 (i.e. A = P{/k = moglk # 0) subject to the initial conditions (3) and
0;(0) # 0, where 0;(0) are assumed to be known or have been already determined. Comparing this case with
the previous one (i.e. H = 0 and m, # 0), one should anticipate that dynamic buckling under impact load
for a given height /& will occur for a smaller mass m, than that of the step loading of infinite duration.
Clearly, the magnitude of the falling mass required for dynamic buckling decreases as the height increases.
Another noticeable feature of the second case is that the direction and the amplitude of the initial motion
depends not only on 0;(0) = ¢; but also on the initial angular velocities 0;(0). Moreover, instead of Eq. (5)
the total energy E becomes
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t
E=K+V+2/ Fdl =K° (8)
0

where K° is the initial kinetic energy at time 7 = 0 evaluated by means of the known initial conditions
associated with and 6,(0). Apparently, throughout the motion (including dynamic buckling)

V=V-K'<0 %)

At ¢ = 0 (immediately after impact) V/ = —K° since V(1 = 0) = 0. A lower bound of the load ip = mogl/k
(or the striking mass 71p) can be obtained by solving the system of equations

% j j) };2 . } (h = H/nt) (10)

Following the procedure valid for the step loading we plot the curve V = 0 in the horizontal plane 00,0,
for load 42 = p (see Fig. 7a). Point A from which the motion is initiated is now inside the area surrounded
by the closed curve V = 0. Contrary to the previous (step loading) case this motion is associated with initial
velocity. The initial direction and the corresponding maximum amplitude of motion, which are required for
the subsequent analysis, depend now on both 0;(0) and 0;(0). These can be established with sufficient ac-
curacy via the linearized equations of motion. If A’ is the point of intersection of the line through A along
the initial direction of motion with the curve V =0, then AA’ (Fig. 7a) is related to the initial kinetic energy
K°. Increasing further /. (above /p), we obtain a new saddle D” (Fig. 7b). If the “‘width” 4,4, of the new
open curve ¥ = 0 at D” (defined above) becomes equal to the “width” A’A” (where A” is a point along the
initial direction of motion such that A’'M = MA”"), then dynamic buckling occurs, otherwise we must in-
crease the load. Point M is assumed to be associated with the minimum potential energy along the initial
direction of motion. An inherent approximation is introduced via this approach and should be noted: the
location of points A’ and A” accounts fully for the value of K°, but takes only indirectly (via the initial
direction and amplitude of motion) into account the concrete values of 0,(0) and 0,(0). However, the same
value of K° may be related to an infinite number of combinations of values of 0;(0) and 6,(0).

() ()

Fig. 7. Curves ¥/ = 0 for the case of impact with point A inside it (a) 2 = p (b) A = ip.
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This approximate choice of A” was determined after an extensive numerical study and comparison to
other alternatives. Theoretically, the most accurate approach is by evaluating the linearized direction of
motion (see Appendix A), and then carrying out successive iterations by increasing the time until reversal of
the direction of motion is detected. The point of reversal of motion is the required point A”. This approach
is very demanding on computing effort and provides results which are usually negligibly better than the
ones of the proposed approach. One other alternative, which is computationally simpler, is to choose point
Al as the point (Fig. 7a) where the line through A along the initial direction of motion intersects the curve
V =0 for A= /p. This approach gives less accurate results. Another option, which is computationally
cumbersome is to locate the intersections A; and A, of the line through A along the initial direction of
motion with the curve ¥ =0 for 2 = p and require that A"A; = A,A’ (Fig. 7b). This alternative gives
practically the same results as the proposed method.

The equality 4,4, = A’A” is readily achieved after a few trials without leading to an accumulation of
error since each trial is independent of the others. The corresponding load denoted by Jp is the DBL. The
above analysis can be readily extended to dissipative systems (Kounadis et al., 1997).

A further question which needs clarification refers to the choice of the point in the vicinity of D”, de-
noted by Dy, where the “width” of the opening of the motion channel should be measured (Fig. 8). This
point is located between point D” and the point Dj,, which must be defined next. D” is the point on the
static post-buckling equilibrium path for 4 equal to the load we are checking. Dj, is defined as the saddle
point with V' = 0, satisfying the equilibrium equations (being constant independently of the load we are
checking). Thereafter, measuring the “width” at D/, we obtain a lower bound, Ap,, of the DBL, which is a
much better estimate of /p than Ap. An even better estimate of the DBL is possible if the “width” is
measured at point Dy, obtained from the equation of weighted average:

D//D/a/p _ /pw

" /Ty A
DDy,  Apw + Apap

(11)

where p ,p is the load we are seeking. This choice yields an approximate Jp.ap of the DBL, which is usually
a better estimate than Ap ¢, but is no longer a lower bound, since it may be slightly larger or smaller than the
exact load Ap.

Fig. 8. Characteristic points in the vicinity of the saddle.
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4. Numerical results

Consider the 2-DOF nondissipative cantilever model of Ziegler shown in Fig. 9 with initial imperfections
¢ and ¢, and rotational springs with quadratic stiffness components J, and J, for which numerical results
based on 7_:13 are available (Chow and Hale, 1982, Kounadis, 1982). For this system, the initial angular
velocities 0;(0) (i = 1,2) are obtained by

% (1 + sin’(e; — £)]07(0) — [Lcosersin2(e; — &) — (1 + ;) cosesin (&2 — &1) + gy sine |6, (0)
— oo sing; cose, sin(e; — &) =0
and
. 1 . .
92(0) = m |:,uol)() Smme; — (1 + #1)91 (0):| (12)

where u, = my/(mo + ma), w, = my/(my + my), By = vo/ (my + my) /k. Taking into account that 1 = mogl/k
and h = H/nl = H/2¢ the last expression for v, becomes

Do = \/2nhi /1y = 2+/h /g (13)

For given ¢ (i = 1,2), h, y, and p,, it follows that both 6, (0) and 6,(0) can be expressed as functions of
A. Thus, the initial kinetic energy (Chow and Hale, 1982)

K® =31+ )07(0) + 03(0) -+ 201(0)02(0) cos (e2 — e1)] (14)

is also expressed as a function of 4. Clearly, for a given /& the unknown control parameter is 4, and vice-
versa. Hence, Eq. (10) can be solved with respect to 0,, 0, and 4 for given values of ¢;, u,, i, and 4. Since

mog 7
1

A

Fig. 9. 2-DOF Ziegler model.
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there are two sets of values of 91(0) and 92(0) obtained from Eq. (12), Eq. (10) also gives two corresponding
values of A = Jp, the minimum of which is a lower bound of the exact DBL.

It should be noted that although the DBL Ap is related to the mass my, the initial-value problem is
properly defined, if in addition to the ratio m, /m,, the ratio my/m (or mg/m,) is a priori know. This is so,
because the response of the system depends not only on the ratio m; /m, but also on the relative magnitude
of my compared to m, (or m,). It is also worth noticing that one could keep constant the mass n, and solve
with respect to 4. However, such a case, requiring also a suitable reformulation of the problem regarding
the choice of parameters involved, is less convenient than the first case mentioned above which is considered
in the examples that follow.

If all the above assumptions are satisfied, including the last one regarding the shape of the curve V = 0
for a given 2-DOF cantilever (i.e. for given values of the parameters ¢,k and m;/m,), one can proceed
to the dynamic buckling analysis under impact due to a heavy body myg falling from a height 4, as fol-
lows. For a given height /# and mass ratio my/m; (or my/m,) or more conveniently for given ratios p, and
14, one can establish the DBL /p, (or my = kip/gf) by applying a procedure consisting of the following
steps.

First step: Obtain from Eq. (12) the angular velocities 91(0) and 92(0) as functions of vy or A using Eq.
(13).

Second step: Establish via Eq. (14) K° as function of 4. 5

Third step.: Solve the system of Eq. (10) from which we get /p, the saddle D and the corresponding closed
curve V = 0 from the shape of which one can have a first estimate of the expected degree of accuracy of
Jp and thereafter of Ap.

Fourth step: Increase slightly 7, evaluate the new (open) curve ¥ =0 and then from the equilibrium
equations V] = V5 = 0 the stable and unstable (saddle) points E’ and D” corresponding to the increased
A

Fifth step: Compute the initial direction of motion and the corresponding maximum amplitude via a lin-
earized analysis, outlined in Appendix A and then compare the width A’A” with the “opening” 4,4, of
the open curve V = 0 at the saddle D” (Fig. 8b). The load is increased until A’A” = A,4,, in which case
J = Jpa OF /. = Jp.p, depending on where the width 4,4, is measured.

Numerical results are given below for three different cases. The approximate buckling loads are obtained
by the proposed herein analysis and then are compared with the corresponding loads /p rk obtained by a
modified Runge-Kutta numerical integration scheme which, however, is very time-consuming, requiring
successive iterations, since the initial velocities are unknown. For each problem the results are given in two
columns corresponding to the two solutions of the quadratic equation for the initial conditions. Critical is
the solution which gives the smaller value for the load. This value is denoted as Z*D‘ap.

First case: ¢, = 0.05, &, = —0.031, 6, = —=2.5, 6, = —0.75, A, = 0.360813, u, = 1.84, p, = 0.08, h =1

First solution Second solution
/D.RK 0.349673 0.343117
D 0.305121 —12.741% 0.318938 —7.047%
D.tb 0.339831 —2.814% 0.339824 —0.960%
)TD,ap 0.346455 —0.920% 0.344546 0.417%
}f’{lap 0.344546

Fig. 10 shows projections of the motion on the 0,0, plane and the corresponding curves ¥ = 0 for this
case.
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Fig. 10. Curve V =0 and projection of motion for a 2-DOF Ziegler model with ¢ = 0.05, &, = —0.031, 6, = —2.5, J, = —0.75,
w, =184, 4y =0.08, h = 1.
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Second case: ¢ = 0.05, &, =0, 6y = 2.5, 6, = —0.75, 4, =0.267713, u;, = 1.8, 4y =0.1, h=1.6

First solution Second solution
Ay vk 0.251500 0.251497
b 0.248455 —1.211% 0.248465 —1.206%
D.tb 0.249878 —0.645% 0.249880 —0.643%
IDap 0.249937 —0.621% 0.249940 0.619%
)f;;‘ap 0.249937

Fig. 11 shows projections of the motion on the 0,0, plane and the corresponding curves ¥ = 0 for this
case.

Third case: & = 0.04, & = —0.02, 6, = =2, o =—1, p, =2, 44, =0.05, h = 1.6

First solution Second solution
/D.RK 0.326029 0.325368
D 0.319248 —2.080% 0.314780 —3.254%
)fwb 0.324724 —0.400% 0.323897 —0.452%
ZD,ap 0.324844 —0.363% 0.324001 0.420%
)t]*),ap 0.324001

The next example, shown in Fig. 12, illustrates a case where the proposed approach is not expected to
give reliable results due to a “width” to length ratio of the curve ¥ = 0 much larger than the lower bound
defined in Section 3.1.1. In addition, for this case the “width” of the curve ¥ = 0 at point D” in the initial
direction of motion changes very rapidly with increasing load. Therefore, convergence of the proposed
approach encounters difficulties and the results are unsatisfactory.

In conclusion, two final comments should be made. The first is that it is possible to extend the con-
clusions from 2-DOF systems to n-DOF systems by replacing planes by hyper-planes and spaces by hyper-
spaces. Such extension has been demonstrated in previous work (Kounadis et al., 1997) for the case of
estimating the dynamic buckling load of systems under impact loading as well as for the case of applying
geometric criteria on the energy surface, but for step loads of infinite duration (Kounadis, 1999; Gantes
et al., 1998).

The second concluding comment has to do with the applicability of the proposed approach for actual
engineering problems. Regarding such applications of dynamic response due to the discussed type of impact
loading, one should mention simple structures that can be simulated by pertinent models, which are fre-
quently encountered in practice, such as cranes (Kounadis, 1982). Other examples include cantilever-type
vertical structures such as steel latticed towers, used for example for telecommunication applications or for
elevated water tanks. The case of impact load can arise either due to the nature of operation of the structure
or because of accidents, for example in case of objects falling from moving cranes.
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Fig. 11. Curve V =0 and projection of motion for a 2-DOF Ziegler model with & = 0.05, &, =0, 6, = 2.5, 6, = —0.75, i, = 1.8,
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Fig. 12. Curve ¥ = 0 and projection of motion for a 2-DOF Ziegler model with & = 0.05, &, = 0.05, 8, = 1, 6, = —10.1, u, = 1.84,
Lty = 0.08, h =2.2.

Appendix A

For the 2-DOF nondissipative cantilever model of Ziegler shown in Fig. 9, the equations of motion (4)
are simplified by linearization and omission of damping terms, and are written in matrix form as follows:

() )

which can be rearranged as:

0+A-0+e=0 (A2)
where
_ T 1 —3¢; + 2¢,
0=10 0}, s_m{381—282+m(81—£2) (A-3)
1 3—-17 -2+ 4
A‘Z-s—m+12+m—z—mJ (A4)

After computing the eigenfrequencies w; and w, and the corresponding eigenvectors h; and h, of matrix
A (A.2) can be written as:

0+H-D - H' - 0+:=0 (A.5)
where

Then, by setting:
H' 0=4¢ (A.7)

we obtain two decoupled equations:
¢+ ¢ +Er =0

i A8
by + 03y + E, =0 (A8)
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where
T -1
{El Ez } =H " -¢ (A9)
The solution of (A.8) is

¢, = arsin(wt) + by cos(wt) —

2
El (A.10)

¢, = apsin(wyt) + bycos (wat) — —z

2

The constants a;, a», b;, b, are obtained from the initial conditions:
T
0 0} =d{bi—% b2l gy )"

{610) 90} ={b1=5 b-F} =H (o} Al

{6,000 $,00} ={aw am} =H{v, 0}

where v; and v, are the known initial velocities obtained in Section 5. Then, by back transformation, we
obtain:

0=H- ¢ (A.12)

Following the evaluation of 0, the direction of motion is obtained by calculating the coordinates 0; and
0, shortly after the start of motion while the calculation of the linearized amplitude requires successive
iterations to detect reversal of motion.
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